Keyword

VEGETATION COVER

89 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Update frequencies
status
From 1 - 10 / 89
  • Categories    

    <p>Digital Hemispherical Photography (DHP) upward-looking images were collected annually to capture vegetation and crown cover at Whroo Dry Eucalypt SuperSite. These images can be used to estimate Leaf area index (LAI), Crown Cover or Foliage Projective Cover (FPC). </p><p> The site was established in 2010 in box woodland dominated by <em>Eucalyptus microcarpa</em> (grey box) and <em>eucalyptus leucoxylon</em> (yellow gum). For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/whroo-dry-eucalypt-supersite/. </p><p> Other images collected at the site include photopoints, phenocam time-lapse images taken from fixed overstorey cameras and ancilliary images of fauna and flora. </p>

  • Categories    

    This product has been superseded and will not be processed from early 2023. Please find the updated version 3 of this product at https://portal.tern.org.au/metadata/23885. An estimate of persistent green cover per season. This is intended to estimate the portion of vegetation that does not completely senesce within a year, which primarily consists of woody vegetation (trees and shrubs), although there are exceptions where non-woody cover remains green all year round. It is derived by fitting a multi-iteration minimum weighted smoothing spline through the green fraction of the seasonal fractional cover (dim) time series.

  • Categories    

    <p>Digital Hemispherical Photography (DHP) upward-looking images are collected up to twice per year to capture vegetation and crown cover at Wombat Stringybark Eucalypt SuperSite. These images are used to estimate Leaf area index (LAI). The images are captured at the times of estimated maximum and minimum LAI. </p><p> The site was established in 2010 in the Wombat State Forest in Central Victoria. The site is dry eucalypt forest with main species <em>Eucalyptus obliqua</em>, <em>Eucalyptus radiata</em> and <em>Euclayptus rubida</em>. For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/wombat-stringybark-eucalypt-supersite/. </p><p> Other images collected at the site include photopoints, phenocam time-lapse images taken from fixed under and overstorey cameras and ancilliary images of fauna and flora. </p>

  • Categories    

    An estimate of persistent green cover per season. This is intended to estimate the portion of vegetation that does not completely senesce within a year, which primarily consists of woody vegetation (trees and shrubs), although there are exceptions where non-woody cover remains green all year round. It is derived by fitting a multi-iteration minimum weighted smoothing spline through the green fraction of the seasonal fractional cover (dp1) time series. A single band image is produced: persistent green vegetation cover (in percent). The no data value is 255.

  • Categories    

    The MODIS Land Condition Index (LCI) is an index of total vegetation cover (green and non-photosynthetic vegetation ), and so is also an index of soil exposure. The LCI is a normalised difference index based on MODIS bands in the mid-infrared portion of the spectrum. The index is produced from 500-m MODIS nadir BRDF adjusted reflectance (NBAR) data. As with all products derived from passive remote sensing imagery, this product represents the world as seen from above. Therefore, the cover recorded by this product represent what would be observed from a birds-eye-view. Therefore, dense canopy may prevent observation of significant soil exposure.

  • Categories    

    <p>Digital Cover Photography (DCP) upward-looking images are collected twice per year to capture vegetation cover within the core hectare at Cumberland Plain SuperSite. These images can be used to estimate Leaf area index (LAI), Crown Cover or Foliage Projective Cover (FPC). The images are captured at the times of estimated maximum and minimum LAI. In addition, DCP images have been taken on a monthly basis from 2018-2020 at a subset of sites in the core hectare, co-located with litterfall traps and under-canopy radiation sensors, to evaluate more detailed seasonal dynamics of LAI and other aspects of canopy growth. </p><p>The Cumberland Plain SuperSite was established in 2012 in endangered remnant Eucalyptus woodland and is subject to pressure from invasive weeds, altered fire regimes, urban development, conversion to agriculture and extreme climate events. However, the woodland is in excellent condition with the exception of edge effects. The site is located on the Hawkesbury Campus of the University of Western Sydney in New South Wales. For additional site information, see https://deims.org/a1bb29d8-197c-4181-90d8-76083afd44bb/ . </p><p>Other images collected at the site include photopoints, phenocam time-lapse images taken from fixed overstorey cameras, and ancillary images of fauna and flora. </p>

  • Categories    

    The seasonal dynamic reference cover method images are created using a modified version of the dynamic reference cover method developed by <a href="https://doi.org/10.1016/j.rse.2012.02.021">Bastin et al (2012) </a>. This approach calculates a minimum ground cover image over all years to identify locations of most persistent ground cover in years with the lowest rainfall, then uses a moving window approach to calculate the difference between the window's central pixel and its surrounding reference pixels. The output is a difference image between the cover amount of a pixel's reference pixels and the actual cover at that pixel for the season being analysed. Negative values indicate pixels which have less cover than the reference pixels. The main differences between this method and the original method are that this method uses seasonal fractional ground cover rather than the preceding ground cover index (GCI) and this method excludes cleared areas and certain landforms (undulating slopes), which are considered unsuitable for use as reference pixels. This product is based upon the JRSRP Fractional Cover 3.0 algorithm.

  • Categories    

    This product has been superseded and will not be processed from early 2023. Please find the updated version 3 of this product at https://portal.tern.org.au/metadata/24070. Two fractional cover decile products, green cover and total cover, are currently produced from the historical timeseries of seasonal fractional cover images. These products compare, at the per-pixel level, the level of cover for the specific season of interest against the long term cover for that same season. For each pixel, all cover values for the relevant seasons within a baseline period (1988 to 2013) are classified into deciles. The cover value for the pixel in the season of interest is then classified according to the decile in which it falls.

  • Categories    

    For some time, Remote Sensing Sciences, has produced Foliage Projective Cover (FPC) using a model applied to Landsat surface reflectance imagery, calibrated by field observations. An updated model was developed which relates field measurements of FPC to 2-year time series of Normalized Difference Vegetation Index (NDVI) computed from Landsat seasonal surface reflectance composites. The model is intended to be applied to Landsat and Sentinel-2 satellite imagery, given their similar spectral characteristics. However, due to insufficient field data coincident with the Sentinel-2 satellite program, the model was fitted on Landsat imagery using a significantly expanded, national set of field data than was used for the previous Landsat FPC model fitting. The FPC model relates the field measured green fraction of mid- and over-storey foliage cover to the minimum value of NDVI calculated from 2-years of Landsat seasonal surface reflectance composites. NDVI is a standard vegetation index used in remote sensing which is highly correlated with vegetation photosynthesis. The model is then applied to analogous Sentinel-2 seasonal surface reflectance composites to produce an FPC image at Sentinel-2 spatial resolution (i.e. 10&nbsp;m) using the radiometric relationships established between Sentinel-2 and Landsat in Flood (2017). This is intended to represent the FPC for that 2-year period rather than any single date, hence the date range in the dataset file name. The dataset is generally expected to provide a reasonable estimate of the range of FPC values for any given stand of woody vegetation, but it is expected there will be over- and under-estimation of absolute FPC values for any specific location (i.e. pixel) due to a range of factors. The FPC model is sensitive to fluctuations in vegetation greenness, leading to anomalies such as high FPC on irrigated pastures or locations with very green herbaceous or grass understoreys. A given pixel in the FPC image, represents the predicted FPC in the season with the least green/driest vegetation cover over the 2-year period assumed to be that with the least influence of seasonally variable herbaceous vegetation and grasses on the more seasonally stable woody FPC estimates. The two-year period was used partly because it represents a period relative to tree growth but was also constrained due to the limited availability of imagery in the early Sentinel-2 time series. The FPC dataset is constrained by the woody vegetation extent dataset for the FPC year.

  • Categories    

    Digital Hemispheric Photography (DHP) upward-looking images are collected up to three times per year to capture vegetation cover at Boyagin Wandoo Woodland SuperSite. These images can be used to estimate Leaf area index (LAI), Crown Cover or Foliage Projective Cover (FPC). The Boyagin Wandoo Woodland SuperSite was established in 2017 in Wandoo Woodland, which is surrounded by broadacre farming. About 80% of the overstorey cover is <em>Eucalyptus accedens</em>. For additional site information, see https://www.tern.org.au/tern-observatory/tern-ecosystem-processes/boyagin-wandoo-woodland-supersite/ . Digital Cover Photography was also collected at Boyagin from 2019.